
*Corresponding author.
1All trademarks appearing in this paper are properties of their

respective companies.

Computers & Graphics 23 (1999) 7—24

Computer Graphics in India

An architecture for the shaping of Indic texts

S.P. Mudur*, Niranjan Nayak, Shrinath Shanbhag, R.K. Joshi
Graphics and CAD Division, National Centre for Software Technology, Juhu, Mumbai 400 049, India

Abstract

There has been virtually no software localization into any of the major languages of India. One important reason for
this is the fact that enabling Indic scripts at the base software level involves sophisticated computational process that are
far from the traditional font level substitutions that suffice for a number of other world languages. Indian languages are
basically phonetic in nature and fortunately, their writing systems are amongst the most logical and are thus highly
amenable to being embedded in software. This paper is primarily concerned with the shaping process needed at the kernel
level of the operating system so that software systems can include support for enabling Indic scripts. The shaping
architecture and computational process described are based on over two decades of work in trying to build basic support
for Indian languages in computer systems. We first present the basic phonetic nature of Indian scripts and the unique
characteristic nature of writing in Indian languages. Next the computational process of shaping and a general
architecture for its implementation are described. Finally the specific implementation for Unicode encoded texts
displayed using TrueType Open fonts is briefly presented. (1999 Elsevier Science Ltd. All rights reserved.

Keywords: Indic texts; Complex scripts; Uniscribe; TrueType Open fonts

1. Introduction

Of India’s nearly one thousand million people, over
nine hundred million are currently excluded from active-
ly participating in this so called information age —
internet and the web by the near total absence of software
that can deal with information in the language which the
majority of the Indians speak. In the recent past inter-
nationalization has been of concern in all major software
development efforts in the world.1 Thus, a number of
software systems of wide use have been localized to
enable their use by many non-English speaking persons
in Europe, Japan, China and Arabic countries. However,
there has been virtually no ‘software localization’ into
any of the major languages of India. The reasons for this
could be many — cultural, market size, etc. However,
technologically too localization of software for use in
India poses a number of challenging problems. The first
and most important being the fact that Indian language

encoding and display requires computational processes
that are very different from those required by other
languages of the world. Thus enabling Indian languages
in software does not happen by simple font level substitu-
tion. Far more sophisticated processing of the encoded
text is needed for determining the final appearance on the
display or on hard copy (Fig. 1).

This paper is primarily concerned with the shaping
process needed in software systems to include support for
enabling Indic scripts. There are a number of software
applications that support Indian scripts in the Indian
market today. However, all of these are specific applica-
tions and hence even standard desktop metaphor opera-
tions like cut and paste are not available. It is important
that Indic script shaping is enabled at the kernel level to
be able to truly derive the benefits of the tremendous
developments taking place through software. In this pa-
per we specifically address the development of software
with this goal. The work described in this paper is based
on over two decades of research and development in
trying to build in Indian language support in computer
systems [1—9].

In the next section the basic phonetic nature of Indian
scripts and the unique characteristic nature of writing
in Indian languages are discussed. Next the system

0097-8493/99/$— see front matter (1999 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 7 - 8 4 9 3 (9 8) 0 0 1 1 3 - 7

Fig. 1. Letters of major Indian scripts corresponding to letter ‘A’
from Roman. Fig. 2. Vowels, consonants and graphic signs in Devanagari.

architecture framework within which the shaping engine
operates is briefly discussed. Then the computational
process of shaping and a general architecture for its
implementation are presented in detail. Finally the speci-
fic implementation for Unicode encoded texts displayed
using TrueType Open fonts are briefly discussed. The
paper includes a large number of illustrations to enable
people not knowledgeable in Indic scripts to understand
the basic requirements and shaping solutions.

1.1. The phonetic basis of Indian languages

India is a multilingual country with 18 recognized
official languages and over 6000 dialects. Of these 18
official languages, some are of Perso-Arabic origin with
script and writing rules similar to Arabic. Most of the
others have their orthography derived from the ancient
Brahmi script. As a result the orthographic rules for
writing text in these scripts are more or less the same,
even if their scripts are totally distinct. This is a great
boon when it comes to computerization. One software
engine with different parameterizations for the different
scripts/languages will be able to handle this group of
languages. The rest of this paper is about this software
engine, the shaping engine for Indic scripts.

Panini’s phonetic classification of the Indian alphabets
into vowels (V) and consonants (C), (known as Swaras
and Vyanjanas in Sanskrit, Hindi, Marathi and Konkani,
Atchulu and Hallulu in Telugu, uir and mey in Tamil,
etc.), serves as a common base for all Indian languages
of non-Perso-Arabic origin. It also provides us with
a unique encoding for any word in the language. There
are differences in their written forms, as different letter
shapes and different shaping rules get used. In addition to

the vowels and consonants, there are also a few graphical
signs used for denoting nasal consonants, for nasalization
of vowels, etc. (denoted hence forth by G).

The effective unit of the writing system for all the
Indian languages is the orthographic syllable, (known as
Akshara in Hindi and Varna in Sanskrit), consisting
either of a lone vowel, optionally, followed by a graphical
sign with the structure (V) (G) or a consonantal syllable
consisting of a consonant and a vowel (CV) core and,
optionally, one or more preceding consonants, and
an optionally following graphical sign (Fig. 2). The
canonical structure for a syllable is thus of the form
(C (C)) (C (V)) (G). Two consonants in a syllable is
a common phenomenon. In some syllables the number of
consonants can go even up to five.

The methodology of combining these two basic groups
(C and V) to form various syllables is in itself a unique
and scientific approach, common to all the Indian scripts.
The various combinations of one (or more) consonants
with each of the vowels turns out to be a perfect matrix
called Barakhadi in Hindi, Marathi, Konkani and
Gujarati, Matralu in Telugu, Varnamala in Sanskrit,
Bannan in Assamese, Bangla, Oriya and so on. The
Barakhadi table is used to teach a child writing in an
Indian script in the same way as multiplication tables are
used to teach arithmetic. In fact all primary language
teaching books will include such a table in some form or
the other [10].

The vowels include short and long versions of the same
pronunciation. There are 12 basic vowels which are com-
mon to all languages, and hence the term Barakhadi
(Fig. 3). Each of the languages may have vowel sounds
that are slight variations and additions to these basic set
of 12 vowels.

8 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 3. Forming the Barakhadi.

Fig. 4. Five vargas and their source.

Fig. 5. Vowel matras are attached from all sides to a given
consonant.

¹he consonants: The basic set of consonants common
to most Indian languages have been categorized accord-
ing to their source center’s in the human body which help
us in producing these sounds, guttural (throat), palatal
(palate), dental (teeth), etc. There are 5 vargas (groups) and
a set of non-varga consonants. Each Varga contains
5 consonants, the last of which is a nasal one. The first
four consonants of each Varga, constitute the primary
and secondary pair. The second consonant of each pair is
the aspirated counterpart (has an additional ‘h’ sound) of
the first one (Fig. 4).

Apart from this basic set, like in the case of vowels,
there are a few more consonants in use in some of the
other languages, essentially variations in pronunciation
of some of the consonants.

Anuswar: Anuswar indicates a nasal consonant sound.
When an Anuswar precedes a consonant belonging to
any of the 5 Vargas, then it represents the nasal conson-
ant of that Varga. Before a non-Varga consonant how-
ever the anuswar represents a different nasal sound.
Though pronunciation of the nasal consonant sound
occurs first it has become standard practice when writing
or typing to add it to the end of the previous syllable.

In Fig. 4, Varga 1 are the Gutturals. Varga 2 are
the Palatals. Varga 3 are the Linguals. Varga 4 are the
Dentals. Varga 5 are the Labials

2.1. Non-Varga

Chandrabindu: This sign denotes nasalization of
the preceding vowel (can be implicit vowel within a
consonant).

»isarg: This sign appears after a vowel sound, and
represents a sound similar to ‘h’.

Ayudha eluthu: This sign of Tamil appears after a
vowel sound, and represents a sound similar to ‘kh’.

2.2. Characteristic features of the writing system in
Indian languages

»owels and »owel Matras: A characteristic feature of
the writing system is that the rendering of a vowel is
based on its relative position with respect to consonants
(Fig. 5).

There are separate shapes for the stand-alone vowel
(when it appears at the beginning of a word or when it
immediately follows another vowel).

The medial vowel, as it is called, when it immediately
follows a consonant, usually takes the form of a sign
(known as Matra in Devanagari) to be attached to the
basic consonant shape. It is the attachment of the matras
to the consonant shapes that makes rendering Indian
scripts more complex. While the encoding order is CV,
the matra sign corresponding to V can attach itself to the
left, right, top, bottom or even surround the consonant

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 9

Fig. 6. Consonant, their full forms and half forms. Fig. 7. Various combinations of conjuncts.

shape. The precise shape of a matra sign will depend on
the consonant shape that it gets attached to. It is not
uncommon for any single vowel to have many different
matra glyphs.

It is noteworthy that the rules pertaining to the se-
quential arrangement of vowels and consonants are com-
mon and consistent. A vowel preceded by a vowel (VV),
or a vowel followed by a consonant (VC) but not preced-
ed by a consonant would always result in a stand alone
vowel whereas a consonant followed by a vowel would
always result in a consonant combined with a vowel
matra.

2.3. Single consonants and half-consonants

The basic consonant shape in the Indian script always
has the implicit vowel (the vowel sound as of the last ‘a’ in
the word ‘consonant’), and hence there is no explicit
Matra form for the [a] vowel. However, there are equiva-
lent Matras for all the other vowels, which get attached
to the basic consonant shape whenever the correspond-
ing vowel follows (immediately) the consonant (Fig. 5).

The written form of a basic consonant without the
implicit [a] vowel either has an explicit shape or it has
the graphical sign, known as the virama (or halant in
Hindi) attached to its basic consonant shape. This is then
referred to as the ‘Halant form’ of the consonant.

Often when the basic consonant without the implicit
[a] vowel is immediately followed by one or more con-
sonants, then this consonant may take what is called as
the half-form in the ligaturized version of the combina-
tion of consonants. The half-form of a consonant closely
resembles the basic consonant, usually with some part
(say stem) removed (Fig. 6).

2.4. Conjuncts

In Indian scripts when two or more consonants cluster
together as part of a syllable, then the consonant

cluster can take a very different shape from that of the
constituent consonants. These are known as conjuncts
(Samyuktakshara in Sanskrit, Jodakshar in Marathi,
Dhwitwaksharallu in Telugu, Juktakshara in Bengali,
etc.) This orthographic unit of pure consonant#pure
consonant#2#vowel (C2CV) is common to all
these Indian scripts. Therefore, the basic unit of the pure
consonant (basic consonant without the implicit [a]
vowel), and its combination with vowels is the common
base for all Indian scripts (Fig. 7).

In a number of languages like Sanskrit, Bengali, Oriya,
etc. the number of conjunct shapes can be very much

10 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 9. Extended vowels for ancient Sanskrit text.

Fig. 8. Extended vowels for link language diacritics.

Fig. 10. Barakhadi of letter KA.

larger than the number of consonants governed by the
system. Conjunct shapes are complex and may be com-
posed out of simpler shapes in a number of ways:

f A distinct conjunct: a completely different shape for
the consonant cluster, in which the individual conson-
ants are not distinguishable. Graphically these con-
juncts are like basic single consonants and they have
their half-forms as well.

f A horizontal conjunct: all preceding consonants in
the syllable cluster take the half-consonant shape while
the last consonant takes the basic consonant shape.
The vowel matra then gets attached to this cluster.

f A vertical conjunct: to a basic consonant or to a dis-
tinct conjunct shape, special signs depicting the other
consonants get attached vertically. The matra then
gets attached to the vertically composed conjunct.

2.5. Link language diacritic marks

In-order to graphically denote vowels and consonants
of another language special diacritic marks are often used
in a specific script. In particular Hindi (written in De-
vanagari script) being the national language, addresses
this. A number of diacritic marks have been devised for
extending Devanagari as shown in Figs. 8 and 9.
f the vowel sounds, short E and short O of the South

Indian scripts,
f the vowel sounds in the English words cat, pat, rat and

cot, pot, rot, etc.,
f the flat vowel sounds in Kashmiri,
f the Nukta is used for denoting consonant sounds close

to the original Sanskrit pronunciation (takes its origin
from Arabic/Persian scripts),

f Some times the same consonant has two different
variations in two different languages. For this a second
diacritical mark called as the implosive is used. The
implosive, however, has not been included as a char-
acter in Unicode.

f Vedic signs —Sanskrit marks specific to Vedic Sanskrit
text.

2.6. Numerals

All the Indian scripts have their own distinct shapes
for the numbers. In all official communication in the
national language Hindi one must use the international
shapes (Roman script numbers). However, Indian script
numbers are in regular use in all other printed material
and also in most of the states.

2.7. Punctuation and special Indian script symbols

All punctuation marks used in Indian scripts are bor-
rowed from English. There are a few special symbols and
punctuation marks particular to Indian scripts. Here we
include only those symbols, which are common to most
of the languages, and are also included in Unicode Stan-
dard Version 2.0 [11]. There may be special symbols
specific to a language.

»iram: is used instead of a full stop in the Northern
scripts.

Avagraha: is primarily used in Sanskrit texts. It creates
an extra stress lengthening the preceding vowel.

Aum: is a Hindu religious symbol.
Abbreviation: is used like the full stop in English after

Mr., Dr. etc.
Halant: is a mark that is primarily used to graphically

indicate vowel-less ending of a word.
ºdatta and anudatta: These are two marks, one

below and the other above a character, essentially vowel
elongators.

The barakhadi for the consonant KA is shown in
Fig. 10.

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 11

3. Requirements for Indian language enabling in
software

3.1. Character encoding

Indian language text input differs from that in English.
The most significant difference of these is that in English,
each keystroke maps directly to a letter. Each letter has
a unique code. A ‘Syllable’ — the Indian language equiva-
lent unit of writing letter, however is composed of one or
more characters entered through the keyboards or any
other input mechanism. There are far too many syllables
to be encoded separately.

The syllable is composed of vowels, consonants, modi-
fiers and other special graphics signs. These are encoded,
just as roman alphabets are. The user types in a sequence
of vowels, consonants, modifiers and the graphic signs.
The machine then composes syllables at run time based
on language dependent rules. Every syllable is thus repre-
sented in the machine as a unique sequence of vowels,
consonants and modifiers. In a text sequence, these char-
acters are stored in logical (phonetic) order.

3.2. Rendering Indic characters

Indic characters can combine or change shape depend-
ing on their context. A character’s appearance is affected
by its ordering with respect to other characters, the font
used to render the character, and the application or
system environment. These variables can cause the ap-
pearance of Devanagari characters to be different from
their nominal glyphs (used in the code charts). Addition-
ally, characters cause a change in the order of the dis-
played glyphs. This reordering is not commonly seen in
non-Indic scripts and occurs independent of any bi-
directional character reordering that might be required.

Each syllable has a unique visual representation. How-
ever, there are too many syllables to design individual
glyphs for each. So a font normally contains certain
component glyphs from which a syllable is composed at
run time. The onscreen representation of a syllable is then
a composition of glyphs from the Indian language font.

There is no direct mapping of glyph codes to the
consonant, vowel or modifier codes. However, for every
syllable (a sequence of consonant, vowels and modifiers)
there is a corresponding sequence of glyphs. This con-
stitutes a many-to-many mapping from keystrokes to
glyphs as opposed to the simplistic one-to-one mapping
in roman scripts.

3.3. Caret positioning

In a roman editor, carets are positioned in between
alphabets. In an Indian language editor, carets are posi-
tioned in between syllables. Syllables are a sequence of

character codes in memory and a sequence of glyphs on
screen. Moving over a syllable means moving over ap-
propriate number of character codes in memory and over
combined advance width of glyphs on the screen.

As the user types in a sequence of vowels, consonants
and modifiers, syllables start forming. These syllables are
formed progressively. For example a sequence of one
consonant and one vowel may constitute a syllable.
Adding a modifier to this combination changes it to
a different syllable. The states keep changing. A new key-
stroke that does not form part of the current syllable,
marks the beginning of a new syllable.

As the syllables keep changing, their representations
on the screen change. The number of bytes in a syllable is
not linearly related to the number of glyphs required to
represent it on screen. This is radically different from the
simple roman script model. What it means is that even if
a character is added to the edit buffer the line extent may
decrease, or even if a character is deleted from the edit
buffer the line extent may increase. The system/applica-
tion has to be aware of this.

Since the syllable’s onscreen representation is a composi-
tion of different glyphs, there has to be support for such
composition at runtime. Ideally this support must come
from the operating system. The complete syllable, in its
current state, is required for this composition. This
means that the system/application has to maintain the
syllable break up information amongst the characters in
its buffer.

3.4. Backspace and delete

Backspacing removes immediately preceding conson-
ant, vowel or modifier from the syllable, like a stack’s pop
operation. When there are no more items to be removed,
the syllable is deleted. The syllable and its on-screen
representation changes after every backspace. The delete
operation however removes the entire syllable.

¹hus editing in Indic script involves maintaining a clear
distinction between character codes and glyphs. Each set of
character codes forming a syllable are then shaped together
to get the resulting glyphs. Editing involves maintaining
separate counts of the number of characters and number of
glyphs for each syllable.

4. The shaping architecture

Shaping is the process of taking an input set of charac-
ters to their final glyph presentation forms. The set of
rules governing the shaping and positioning of glyphs are
specified and cataloged within the Unicode standard.
Shaping indic text involves understanding of language/
script specific rules, and basic system/font support so as
to encode these rules.

12 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 11. Architecture of Indic shaping engine.

The shaping architecture described below is a generic
architecture to be used by applications supporting Indic
text layout. In a later section we will briefly discuss
specifically how this is implemented for Unicode encoded
text and TrueType Open fonts.

From the above discussion it should be clear that Indic
scripts require special processing to display and edit
because the characters are not laid out in a simple linear
progression, as most is the case with most other world
languages. This special processing falls into several gen-
eral classes. In the architecture described below, the font
encodes not only the geometric shapes of glyphs but also
the shaping rules applicable. The shaping engine works
concurrently with the font to transform the given se-
quence of coded characters into the right display-
able/printable sequence of font glyphs. Using this archi-
tecture, it becomes possible not to freeze the glyph layout
or even the actual glyphs or their shapes. For a single
language and script two fonts could have differences in
their glyphs, with correspondingly applicable but differ-
ent shaping rules.

4.1. Indic shaping engine components

Syllablic cluster separator: Indic text shaping opera-
tions are carried out at the syllabic level. All input text is
first grouped into syllables as defined by the logic in the
previous section.

Shaping context extraction: The choice of which glyph
sequence to display depends on the surrounding char-
acters. The context and the corresponding rules to be
applied are encoded within the font. The shaping engine
then has to match the contexts from those within the
fonts and apply matching rules in the order specified.

Character/glyph reordering: Certain characters/glyphs
within a syllable are not necessarily in the same visual
order as the input character code sequence. One option is
to embed reordering rules in the font itself. However,
reordering is essentially font independent and a language
dependent issue. Reordering apriori before font lookups
using language semantics/rules is another option. Separ-
ating this script/language dependent part out of the font
removes un-necessary duplication of common rules and
also helps reduce complexity of rules encoded within
the font. Some characters get rearranged from logical
(keystroke input) order to visual order.

Glyph compositing: The shaping engine has to convert
the syllabic cluster of character codes, reorder, determine
contexts, apply context specific rules and finally com-
posite the sequence of font glyphs that represent the
correct visual rendering for that syllabic cluster in that
language using the font.

Glyph positioning: Application of font encoded rules
can result in glyphs resulting from multiple characters
being stacked or combined into one cluster. The shaping
engine handles the correct relative positioning of the

individual glyphs in the composited cluster of displayable
glyphs.

Cursor movement and hit testing: The mapping between
screen position and a character index for, say, selection of
text or cursor display requires knowledge of the layout
algorithms especially since there is a many to many
mapping possible in the Indic language context. The
shaping engine has also to include suitable APIs for this
purpose.

An architecture of the shaping engine and its asso-
ciated components is shown in Fig. 11.

4.2. The Indic script shaping process

The shaping process involves the following steps. In
this we have used the same character names as are used in
the Unicode Version 2 standard.
1. Obtain syllablic cluster of character codes from the

given input sequence.
2. Handle character reordering if any.

The above steps occur in the character domain.
3. Apply individual character code mapping to get it

normalized to the specific font.
4. Extract contexts. The list of contexts needed in our

architecture is given below. More detailed description
of these contexts and the rules to be applied in these
contexts are presented later.

(REPH): When the ‘R’ pure consonant is the
first in a syllabic cluster.

(AKHAND): When the syllabic cluster includes
a substring which has to be treated
like a separate letter.

(NUKTA): When a consonant is followed by
a ‘Nukta’ character code to denote
that it’s sound is being modified.

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 13

Table 1

Shaping rules listed in precedence order Corresponding Unicode rules Typical form of compositing operation

Reph R2 Glyph substitution
Akhand R3/R11/R12 Glyph substitution
Nukta R9 Glyph substitution
Pure form of consonant R1 Glyph substitution
Vattu R6/R7/R8/R13 Glyph substitution
Consonant Conjuncts R4/R11/R12 Glyph substitution
Top and Bottom Marks R10/R14 Glyph substitution/Glyph Positioning

The three above are distinct contexts that an Indic
script shaping engine would have to handle. Not all
scripts would require all these contexts. For example
while the reph context is used in many North Indian
languages it is not present in South Indian languages like
Tamil.
5. Reorder code sequence if the syllabic code sequence

requires it.
6. Apply rules for glyph compositing depending on con-

text in the following order.
The syllable ending with a pure constant (without an
ending vowel) is not very common. For the following
steps if a syllable ends with a pure consonant, the
glyph compositing process will work as if the last
consonant is a consonant with the implicit ‘a’ vowel
and then attach the ‘halant’ glyph last. This form is
referred to as the halant form of the consonant.

Apply REPH substitution rule.
Apply AKHAND substitution rule.
Apply NUKTA CONSONANT substitution rule.

7. Apply consonant HALF form rule to the whole syl-
lable. This provides a unique representation for the
pure form — it substitutes Consonant#Halant with
its pure form as an intermediate step. The pure form
is then suitably substituted by either the half-form or
the halant form or ligaturized depending on the sub-
sequently applicable rules.

8. The following compositing rules are applied indepen-
dent of context.

Apply VATTU substitution rule. The vattu is
a consonant glyph shape for combination of con-
sonants. The vattu shape is determined by the pre-
ceding pure consonant. This handles all vattu glyph
substitution.
The font designer can build in suitable rules in the
font, and design and place as many vattu liga-
tures/marks or none at all as required by the font.
In case there is no vattu rule with some consonant,
then the half form is retained.
Apply CONSONANT CONJUNCT substitution
rule.
Apply HALANT substitution rule. This replaces
the Consonant#halant sequence with a single
ligature.

Apply MATRA substitution rule. This handles
substitution of appropriate matra glyphs, ligaturiz-
ation of matras, rephs and vowel modifier glyphs.
(Matra here is taken to mean all glyphs forms that
do not depict a Stand alone vowel or consonant
glyphs.)
Apply REPHCONJUNCT substitution rule. This
handles ligaturization of reph with the preceding
base glyph.
Apply VOWELMODIFIER substitution rule. This
handles ligaturization of matras and reph with
vowel modifier. It also handles context based sub-
stitution of vowel modifiers.

We now have completed the compositing of the syl-
lable in the form of a cluster of glyphs.
9. Glyph positioning

First position the various combining marks at the
end of a syllable.
Specify the correct distances between ligatures if
they differ from the nominal distances.
The following rules are applied during the position-
ing operation:
Apply the table ¹opMarks to the current sequence
of glyphs:
This table positions the top marks Reph, Chan-
drabindu, Anusvara, Udatta, Grave accent, acute
accent and all top matras with respect to different
types of glyphs of type.
Apply the table BottomMarks to the current se-
quence of glyphs:
This table positions the bottom marks Halant,
Anudatta and other matras that appear at the bot-
tom with respect to glyphs of different types.

The standard order for encoding all basic Indic shap-
ing rules is listed below. Each rule represents a single type
of layout/mapping operation. Typeface-specific script
rules for Indic, and all complex scripts, must ultimately
be represented in a font in a font specified standard
manner.

Table 1 shows the standard order for encoding and
applying Indic shaping rules to obtain consistent and
standard visual forms. The table also indicates how each
rule relates to the rendering rules for Indic scripts laid out
in the Unicode Standard.

14 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 12. Reph glyph form substituted and positioned. Fig. 13. Mark glyph form substituted and repositioned.

4.2.1. Indic script shaping contexts and rules
In this section we describe the contexts and rules in

some detail.

4.2.2. Reph context, shaping and reordering rule
If the pure consonant ‘R’ (Ra#Halant in Unicode

characters) is the first consonant in a syllabic cluster, then
the REPH context is ‘on’ and the reph rule has to be
applied. This rule substitutes the combining-mark form
of Reph for the half form of consonant Ra. In addition,
the glyph that represents the combining-mark form of
‘RA’ is repositioned in the glyph string so that it is
attached to the final base glyph of the consonant cluster
(Fig. 12).

In the following illustration (Fig. 13), a longer cluster is
formed, and the mark glyph form of the ‘RA’ syllable is
repositioned at the last consonant of the consonant
cluster.

4.2.3. Akhand context and shaping rule
Certain combinations of consonants, though they are

conjuncts, take distinctly different visual forms, to the
extent that they have to be treated just like the standard
consonant characters in the script. They must have their
half forms, their pure forms, their full forms, their forms
with Reph, with matras, etc. The shaping engine will
check if the syllabic cluster contains a substring that has
to take an Akhand form and turn this context ‘on’. The
Akhand rule provides the akhand ligature form in place
of the proper consonant combination (or ‘conjunct’)
(Fig. 14). Most other consonant conjuncts are repre-
sented by a ligature shape, which is composited using
a composition rule,in which the preceding consonant
assumes a half-form.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated above.

4.2.4. Nukta context and shaping rule
The Nukta is a special character code which alters the

way a preceding consonant is pronounced. All of the
Nukta forms (combinations of consonants and the Nukta
character) have been defined as separate glyphs in Uni-
code, each with their own code points.

Using this context and rule, a glyph representing the
proper Nukta form is substituted for a consonant#
Nukta combination.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 15.

4.2.5. Consonant half-form shaping rule
This shaping rule is the most widely used feature in the

Indic scripts, and substitutes the half-form of a consonant
when a consonant or akhand or nukta consonant is
followed by the Halant character. Half forms of Nukta
consonants and Akhand consonants also exist.

In the case that a language does not have half-forms of
consonants, this rule will substitute a ligature represent-
ing the consonant and the Halant that follows it
(consonant#Halant).

Consonant conjuncts (ligatures) are always formed
from the right. ‘Loose’ left-hand glyphs are replaced by
their respective half-forms.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 16.

4.2.6. Vattu shaping rule
Some Indian languages substitute a consonant within

a syllabic cluster with its Vattu (diacritic suffix like mark)
form depending on the position of the consonant in the
cluster or syllable. This rule enables the substitution of
these special glyphs with a ligature glyph.

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 15

Fig. 14. Akhand form substitution.

Fig. 15. Application of the nukta shaping rule.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 17.

4.2.7. Consonant conjunct shaping rule
Most often a complex conjunct is visually shaped as

a sequence of half-form consonants followed by a con-
sonant, optionally with its associated vowel character. In
such a case, this rule substitutes the ligature glyph repres-
enting the combination.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 18.

4.2.8. Consonant Halant form shaping rule
This rule provides a ligature glyph representing the

Halant form of a consonant, whenever a consonant is
followed by a Halant. This visual form of the consonant
remains in the final appearance if this is the end of the

16 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 16. Half-form of consonant rule applied.

Fig. 17. Vattu shaping rule applied.

Fig. 18. Consonant conjunct shaping rule applied.

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 17

Fig. 19. Consonant halant shaping rule applied.

Fig. 20. Matra ligaturization rule applied.

syllabic cluster. Otherwise, it depends on what character
codes follow in this syllabic cluster.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 19.

4.2.9. Matra substitution and matra ligaturization
shaping rule

The ‘Matra substitution’ rule contextually chooses the
correct shape of the matra character, depending on the
base consonant or the ligature that precedes the matra.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 20.

This feature is also used for substituting a ligature
glyph for the combination of a base consonant followed
by a matra (Fig. 21).

4.2.10. Reph ligature shaping rules
This rule provides a ligature form of a matra combined

with reph when a matra glyph is followed by the reph
glyph.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 22.

4.2.11. Vowel modifier shaping rules
This rule chooses the correct shape of the vowel modi-

fier (combining mark). It can be used to choose the
correct form of the vowel modifier depending on the
preceding ligature. This rule is also used to substitute
matra#vowel modifier, and reph#vowel modifier with
their ligature forms if required.

As a user types each character, the text-processing
application will reshape the glyph or glyph cluster which
is displayed, as illustrated in Fig. 23.

4.2.12. Positioning rules for top and bottom marks
The ‘Top Marks’ rule positions mark glyphs which

appear at the top of a base glyph or ligature glyph. This
rule is applied to glyphs such as dependent vowel signs
(matras), the reph form of the consonant ‘Ra,’ combining
marks (vowel modifiers such as anusvara), and top
accents.

18 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 21. Matra ligaturization rule applied.

Fig. 22. Reph ligature rule applied.

Fig. 23. Vowel modifirs substitution/ligaturization rule applied.

This is a glyph positioning feature, and must be en-
coded in the POSITIONING RULES table of the font.
Each glyph that is to be used as a top mark must be
identified as such in a suitable table of the font.

Top marks positoning is shown in Fig. 24.
The ‘Bottom Marks’ feature positions mark glyphs

that appear at the bottom of a base glyph or a ligature
glyph, such as dependent vowel signs (matras).

This feature is a glyph positioning feature, and is
encoded as a positioning rule in the font table. Use of the
bottom marks feature is illustrated in Fig. 25.

4.2.13. Unicode encoding for Indic scripts
The Unicode Standard is a fixed-width, uniform

encoding scheme for written characters and text. The

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 19

Fig. 24. Top marks rule applied.

Fig. 25. Output of the bottom marks shaping rule.

repertoire of this international character code for in-
formation processing includes characters for the major
scripts of the world, as well as technical symbols in
common use. The Unicode Standard, Version 2.0 con-
tains 38,885 characters from the world’s scripts. These
characters are more than sufficient not only for modern
communications, but also for the classical forms of many
languages. Languages that can be encoded include Rus-
sian, Arabic, Anglo-Saxon, Greek, Hebrew, Thai and
Sanskrit.

The Unicode Standard draws a distinction between
characters, which are the smallest components of written
language that have semantic value, and glyphs, which
represents the shapes that characters can have when they
are rendered or displayed. There are various relation-
ships between character and glyph: a single glyph may
correspond to a single character, or to a number of
characters, or multiple glyphs may result from a single
character.

This distinction is important and applicable to Indic
Script display and processing needs.

The Unicode code ranges for the various Indian scripts
are as shown in Table 2.

Unicode does not encode the pure form of the conson-
ant. Instead it encodes the form of the consonant with an
implicit ‘a’ vowel. Similarly, the vowel is not uniquely
encoded. Instead its standalone form and its matra form
are separately encoded. This is similar, though not exact
as the Indian common standard for encoding all India
scripts [13].

4.3. The TrueType open font format

TrueType Open (TTO) is an extension to the True-
Type font standard [12], the default in Microsoft’s Win-
dows operating systems. TrueType Open fonts contain
additional information that extends the capabilities of

20 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Table 2

Script Code range

Devanagari U#0900—U#097F
Bengali U#0980—U#09FF
Gurumukhi U#0A00—U#0A7F
Gujarati U#0A80—U#0AFF
Oriya U#0B00—U#0B7F
Tamil U#0B80—U#0BFF
Telugu U#0C00—U#0C7F
Kannada U#0C80—U#0CFF
Malayalam U#0D00—U#0D7F

Fig. 26. Relationship between scripts, languages, features and
lookups in open type.

the fonts to support high-quality international typogra-
phy. The most important features of TTO are:

f can associate a single character with multiple glyphs,
and — conversely — it can associate combinations of
characters with a single glyph.

f includes two-dimensional information to support fea-
tures for complex positioning and glyph attachment.

f contains explicit script and language information,
so a text-processing application can adjust its behavior
accordingly.

f has an open format that allows font developers to
define their own typographical features.

f fonts support Unicode character to glyph mappings.

These features of TTO make it an excellent choice for
Indic scripts

As shown in Fig. 26, layout features within TTO fonts
are organized by scripts and languages allowing a single
font to support multiple writing systems, even within the
same script.

TTO fonts are also not dependent on a single charac-
ter-encoding scheme, and in fact the format can support
all the encoding schemes in common use today.

TrueType Open font format allows a font designer to
provide glyphs for the many different forms that a char-
acter may take. It also lets the designer embed informa-
tion required for proper context based glyph selection,
within the font. This information is stored in TrueType
Open fonts tables.

5. Developing TTO fonts for Indic scripts

To arrive at the final display form of a sequence of
characters, the TrueType Open encoding scheme uses
a multi-stage pipeline. The number of intermediate stages
and the resulting final output depend on the input se-
quence of characters.

5.1. Tables

Data in TrueType Open font files is organized into
tables. There are tables to specify font name, font metrics,
glyph outlines and more tables to specify a lot of other
details. The tables that deal with complex-script shaping
are the GSUB table, the GPOS table and the GDEF
table. Of these, GSUB is the most important table as it
embeds the compositing rules and thus determines the
selection of the final glyphs for the given input character
sequence.

5.2. Lookups and LookupLists

The model that TrueType Open uses for shaping is one
of pattern matching and substitution. The original char-
acter sequence is presented to the start of the shaping
pipeline. This sequence undergoes repetitive pattern
matching and substitution operations as it moves from
one stage of the shaping pipeline to the other. Here it is
important to note that every stage acts on the pattern
presented to it by the previous stage of the pattern-
matching pipeline.

All the patterns and their associated substitutions are
encoded as lookups, one for each input pattern. (Note
this is a simplified view, as TrueType Open also allows
encoding of more than one pattern in one lookup using
its Class features).

All the lookups are collected together in the form of the
lookuplists. Each lookup is uniquely identified by its
index into the lookuplist.

5.3. Scripts, languages and features

Scripts can generally be used to represent more than
one language. Just like the Latin script can be used to
represent English and German languages, Indian scripts

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 21

like Devanagari and Bengali are used for writing in many
different languages, with minor differences. The display
forms of a given character sequence depends on the
language which it represents. Different sets of lookups
from the lookuplists are normally required to shape
characters for different languages.

Generally, a collection of lookups is used to describe
a desired shaping effect across all the different possible
input patterns. In TrueType Open, such logical grouping
of lookups is called a feature. In other words, a feature is
nothing but a collection of lookuplist indices, all of whose
lookups describe a common language specific shaping
action. Thus it is this notion of TTO feature that has to
be used to embed Indic script shaping rules. Most com-
positing rules, can be represented as an ordered sequence
of string substitutions. However, reordering and context
based rule application cannot be represented in a finite
number of string matching — string substitution rules.
Hence some Indic script specific processing of the input
character sequence by the shaping engine becomes man-
datory when using TTO fonts.

The GSUB table is organized by scripts, which further
contain the languages that they support. Each language
defines its own set of applicable features. Each feature
defines a collection of lookuplist indices. A set of all
lookups applicable to a particular language can thus be
obtained easily. (The features only group lookuplist indi-
ces. The lookups themselves are defined elsewhere in the
lookuplist. In this way more than one language can share
a lookup without unnecessary duplication of data.)

5.4. Shaping Indic scripts in TTO

The shaping engine is a program that has to accept the
input sequence of character code, say in Unicode and
then interpret the TrueType Open font for defining the
final appearance of this input sequence. Thus, given an
input sequence of characters, it must produce the correct
sequence of output glyphs as defined by the font, for
a particular language. The shaping engine can be a
simple one and may choose to apply all the lookups
applicable to a language, in the order in which they are
defined in the lookuplist. (Order is defined by the lookup-
list indices.) Alternatively, the shaping engine may detect
the applicable set of features for a given input character
sequence and only choose to apply lookups defined
therein. Either way the lookups are always applied in the
order defined in the lookuplist.

Application of a lookup causes its input to change.
This new sequence of glyphs then forms the input for the
next lookup in the shaping pipeline.

Developing True Type OpenType fonts that can be
used to consistently produce the correct visual form for
a Unicode sequence in an Indian language involves:
defining required and optional features, identifying the
ordering of these features, design of all glyphs (base

glyphs, marks, ligatures, etc.), and encoding of the shap-
ing and glyph positioning features in the font.

6. Defining and ordering features

Developing OpenType fonts that support complex
scripts becomes straightforward, once required features
have been defined and organized for a specific shaping
engine. Given any Unicode sequence of characters codes
encoding text in any particular language, there is a fixed
order for executing features to obtain the correct visual
form. This order is defined in conjunction with standards
defined by the shaping engine.

Using these standards, any font developer can efficiently
encode features that will produce a consistent basic form,
across all fonts. The only differences in the design and
layout of a particular script will be typeface specific.

7. Uniscribe implementation in Mircrosoft Windows
NT 5.0

Microsoft has recently announced that all language
versions of Windows NT 5.0 will be enabled for all
supported languages, including European and Far East-
ern [14]. This includes languages written with complex
scripts such as Arabic, Hebrew, Thai, Devanagari, and
Tamil. The shaping of Indic scripts is handled by a Uni-
code Script Processor called as Uniscribe. Below we
present the important points about Uniscribe. For a
complete detailed description the reader is referred to [14].

7.1. Unicode Script processor

Windows NT 5.0 includes the new Uniscribe software,
that supports line measurement, display, caret move-
ment, character selection, justification, and line breaking
of Unicode plain text. It implements rules governing the
shaping and positioning of glyphs as specified and
cataloged within the Unicode standard for applications
performing complex text layout such as is required for
Indic Text.

Uniscribe is composed of multiple ‘shaping engines.’
These shaping engines contain the layout knowledge for
particular scripts (for example, Arabic, Hebrew, Thai,
Hindi, Tamil). In addition, there is an OpenType Layout
shaping engine for handling script features unknown
to Uniscribe. It handles characters in ‘clusters,’ and
the Uniscribe data structure is a large array of clusters.
Uniscribe identifies cluster boundaries and thus achieves
the granularity required by Indic and other complex
scripts.

The overall system architecture in which the Uniscribe
shaping engine gets employed is further described in the
next subsections.

22 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

Fig. 27. Levels of shaping abstraction.

Fig. 28. Character reordering and backbuffer held by Uniscribe.

8. The text-layout client model

A text-layout client may apply certain script features,
or it may rely on operating system services to apply
features, or it may do both. The block diagram in Fig. 27
illustrates different implementation models, and the
different approaches are discussed below.

Responsibilities for tracking and performing text-
layout operations vary depending on a client’s implemen-
tation model, such as, whether a client handles line
breaking.

8.1. Models for client support of complex scripts

As illustrated above, the text-layout client model can
have the following forms:
f Client calls ¹extbox
f Client calls Shaping engine, say ºniscribe
f Client calls System supported Font ¸ayout Services
f Client implements ¹¹O ¸ayout Services Directly

¼hat the Client Gets for Free when using ºniscribe
Services
f Cluster breakup based on Unicode character values

and specified language.
f Positioning of glyphs with in clusters.

9. Managing character reordering

Using Uniscribe, clients need only manage a backing
store of Unicode character codes. Text-layout clients do
not need to maintain any other glyph code buffer or
mapping table to track character order. Consequently,

clients can search and index shaped text easily, because
the backing store never changes as a result of layout
operations (Fig. 28).

10. Conclusion

The availability of shaping engines for Indic scripts at
the Operating System level is a major advance for Indian
languages. About nine hundred million people in India
are not conversant with English. The easy availability of
digital information in one’s own language will have a far
reaching effect socially, economically and even culturally
in a multi-lingual country like India. The shaping engine
architecture and the shaping process that we have de-
scribed in this paper are fairly simple for implementation
in software. At the same time adequate care has been
exercised to ensure that all the finer nuances of writing in
each of the languages are in no way missed out. And at
the same time adequate flexibility is retained in the design
of fonts, etc. We do hope that in the near future other
platforms will also support Indic scripts.

Acknowledgements

Over the last two decades the National Centre for
Software Technology has been working in this area,
building shaping engines, font design systems, text pro-
cessing packages, multi-lingual applications, etc. A very
large number of persons have contributed on a continuing
basis to this effort. The number is just too large to
list here. The authors are grateful to all past members
of the Graphics and CAD division, graphics and linguis-
tic design consultants who have been associated with
this activity, and to the Director NCST for his encour-
agement. Specifically, in more recent times, the authors

S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24 23

are grateful to Microsoft Corporation, USA, for provid-
ing the opportunity to build in some of this know how
into the Windows NT 5 Operating system at the GDI
level.

References

[1] Mudur SP, Wakankar LS. Computer input output in
Devanagari. (Invited) Proceedings of the Symposium on
Use of Indian Languages in Computer Based Information
Systems, New Delhi, May 1978.

[2] Mudur SP, Narwekar A, Moitra A. Design of software
for text composition. Software Practice and Experience
1979;9:325—37.

[3] Moitra A, Mudur SP, Narwekar A. Design and analysis of
a hyphenation algorithm. Software Practice and Experi-
ence 1979;9:325—37.

[4] Mudur SP, Ghosh PK, Sujatha R. Software development
for computer typography and type design. NCSDCT An-
nual Research Review 1981;3:13—26.

[5] Mudur SP, Wakankar LS, Ghosh PK. Design information
on text composition in Devanagari. Published by Research
Institute for Newspaper Development, 1980.

[6] Mudur SP, Ghosh PK. Computer aided text composition
in Indian scripts. Proceedings of the International Confer-
ence INFORMATICS, Vol. 81, New Delhi, 1981.

[7] Mudur SP, Sujatha R. Three systems for typesetting: a sur-
vey. Computer science and Informatics, 1982;12(1):28—36.

[8] Mudur SP, Pattanaik SN, Nath SJ. Computer processing
of Indian scripts — A pure consonant approach. Proceed-
ings of the National Seminar on Computer Aided
Language Processing, Delhi, 1987.

[9] Mudur SP, Pattanaik SN, Nath SJ, VIDURA: an interac-
tive multilingual publishing system. In: vanVliet JC, editor.
Document Manipulation and Typography. Cambridge;
Cambridge University Press, 1988:249—60.

[10] Department of Official Languages, Prabodh Primer.
Ministry of Home Affairs, Government of India.

[11] The Unicode Standard Version 2.0. The Unicode Consor-
tium. Addison-Wesley Developers Press, Reading, MA, 1996.

[12] TrueType Open Font Specification Version 1.0. Microsoft.
July 1995.

[13] IS 13194, Indian Script Code for Information Interchange
— ISCII. Bureau of Indian Standards, December 1991.

[14] Bishop FA, Brown DC, Meltzer DM. Supporting Multi-
language Text Layout and Complex Scripts with Windows
NT 5.0. Microsoft Systems Journal, 1998: http://www.
microsoft.com/msj/1198/multilang/multilang.htm.

24 S.P. Mudur et al. / Computers & Graphics 23 (1999) 7—24

